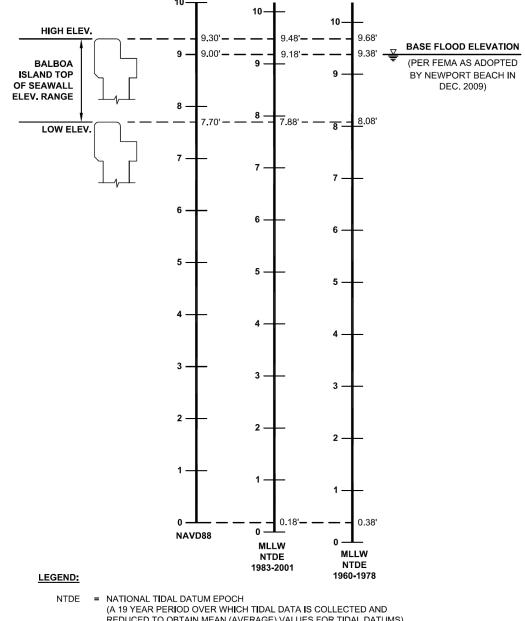
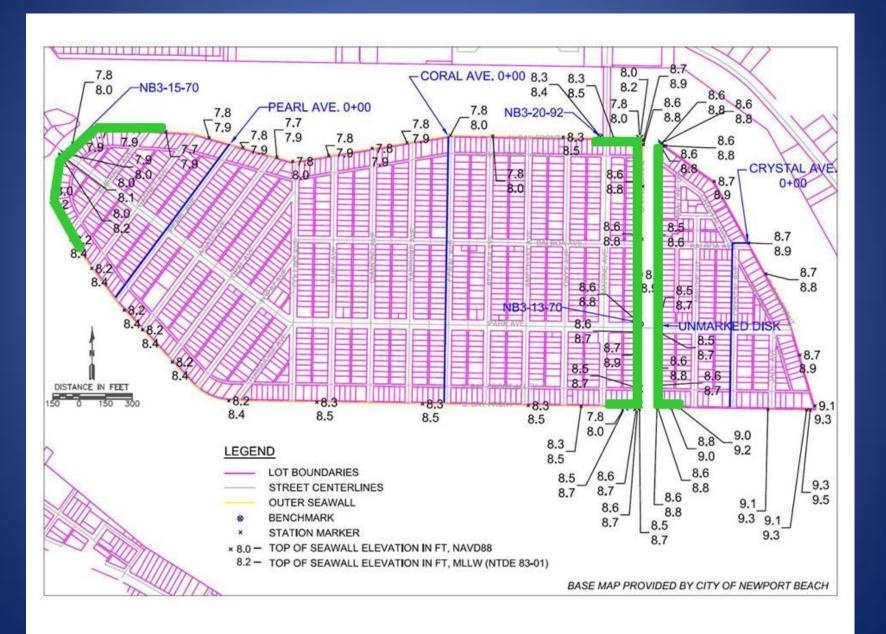
Assessment of Seawall Structural Integrity and Potential for Seawall Over-Topping For Balboa Island and Little Balboa Island

Tidelands Management Committee May 18, 2011

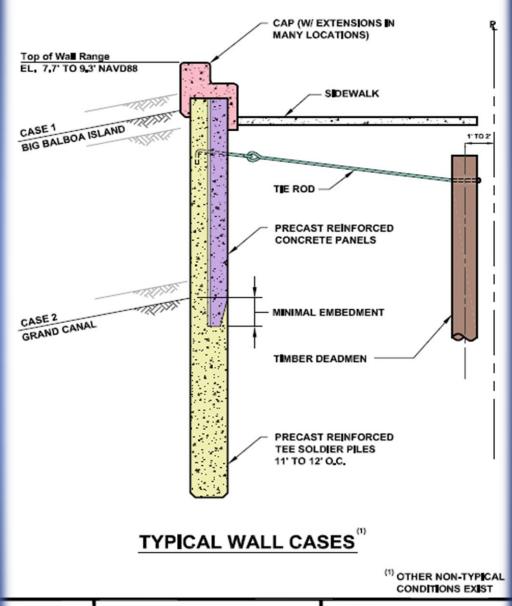

Topics

- 1. Aging Seawall
- 2. Rising Seawater
- 3. Protection Options
- 4. Costs
- 5. Next Steps

Comparison of different Land and Tidal **Datums**


REDUCED TO OBTAIN MEAN (AVERAGE) VALUES FOR TIDAL DATUMS)

MLLW = MEAN LOWER LOW WATER (RELATIVE DATUM BASED ON NTDE DATA)


NAVD88 = NORTH AMERICAN VERTICAL DATUM 1988

(GEODETIC VERTICAL DATUM USING A SINGLE FIXED REFERENCE POINT)

Top of Seawall Elevation [ft]

Anatomy of a traditional Seawall

SK-1

DATE: 5/4/11

5772 Bolisa Ave, Suite 100 Huntington Beach, CA 92849 Tel: (714) 895-2072 Fax: (714) 895-1291

CITY OF NEWPORT BEACH 3300 Newport Blvd. Newport Beach, CA 92683

Little Balboa Seawall Cap Extension Constructed on top of Original Wall in 1988

Crack Repairs with Corroding Rebar

Earth Anchors at Balboa Island Ferry Landing

Sidewalk Separation from Seawall

Distresses in Bulkhead Cap

Seawall Condition

- Seawall Age: 73-82 years
- Overall Condition: Holding together well with widespread cracking and some concrete spalling and evidence of corroding rebar.
- Estimated Useful Life: 10-25 years

Waves Splashing over the Balboa Island Seawall at Turquoise Avenue and South Bay Front

(December 22, 2010)

City Personnel Pumping Flood Water Back into the Bay at Turquoise Ave and South Bay Front

(December 22, 2010)

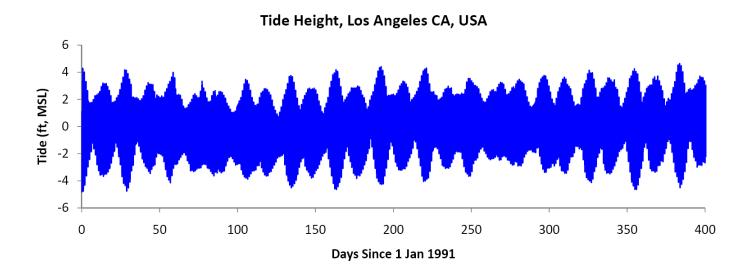
Street Flooding Overtopping Curb

(December 22, 2010)

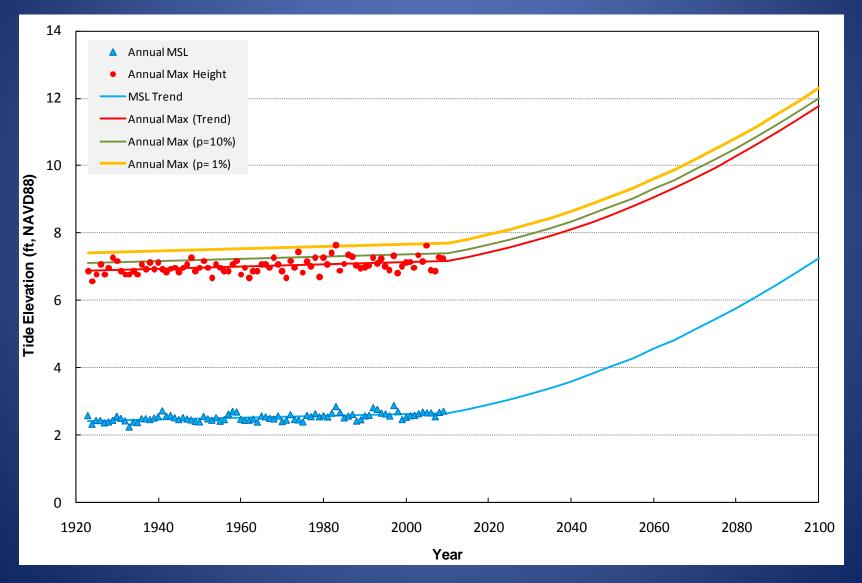
Flood Inundation Modeling

Seawall overtopping depends on:

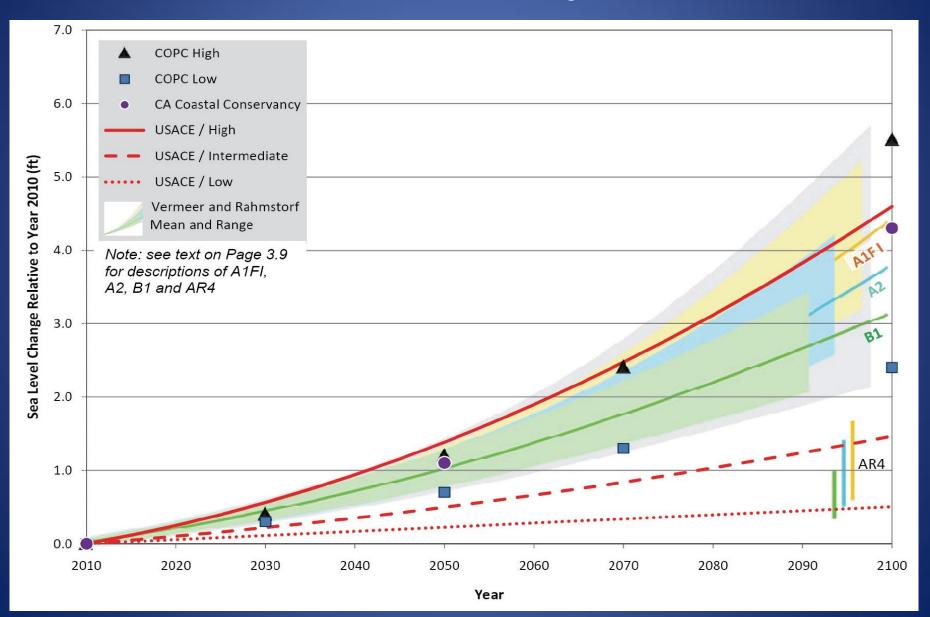
- 1. Seawall elevation
 - a. Existing
 - b. w/6-inch cap
 - c. w/ new of seawall at Elev. 10.0'
 MLLW
- 2. Predicted Future Seawater level


Predicting Seawater Level

Model accounts for:


- 1. Extreme high tide
- Expected rise is mean sea level
- 3. Ocean swell or wind waves

Extreme High Tide


Extreme High Tide

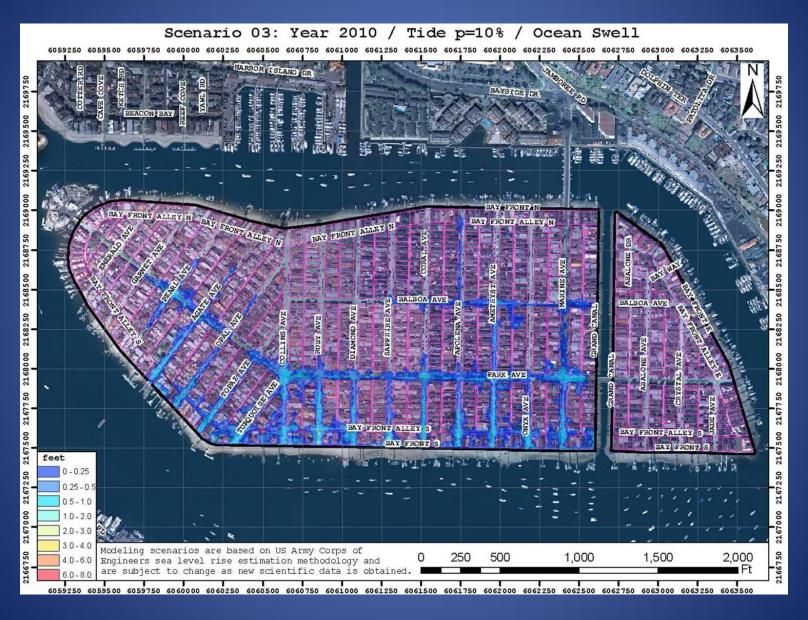
Projections of Mean Sea Level and Extreme Tide Heights Through Year 2100

Sea Level Rise Projections

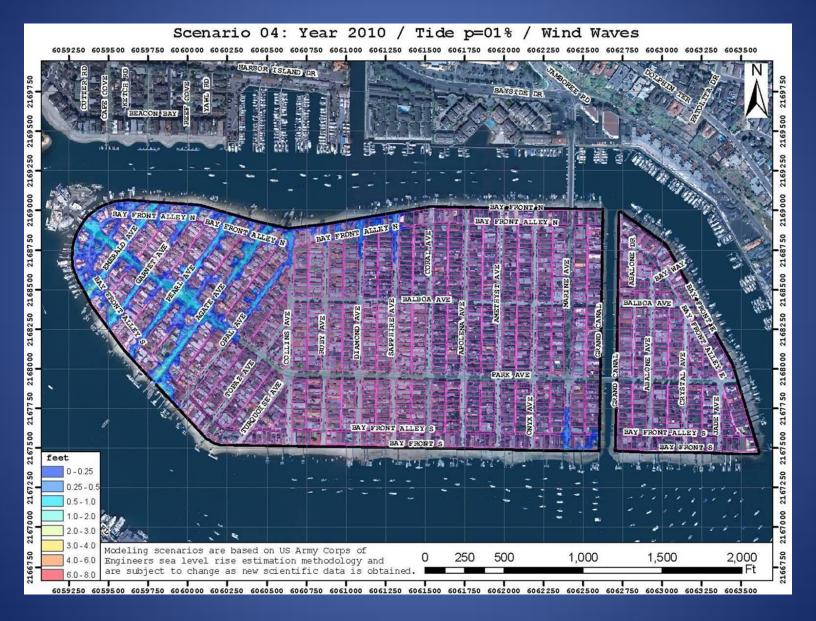
Sea Level and Annual Maximum Tide Height Projections Through Year 2100

YEAR	Mean Sea Level (FT, NAVD88)	10% TIDE HEIGHT (FT, NAVD88)	1% TIDE HEIGHT (FT, NAVD88)	PROJECTED SEA LEVEL RISE (FT)*
2010	2.65	7.41	7.71	-
2025	3.05	7.81	8.11	0.40
2050	4.03	8.79	9.09	1.38
2100	7.25	12.01	12.31	4.60

^{*} equals change in mean sea level from Year 2010.


Flood Inundation Modeling Scenarios

Scenario	SEAWALL CONDITION	YEAR	SEA LEVEL RISE FROM 2010	TIDE HEIGHT (ANNUAL EXCEEDANCE PROBABILITY)	Wave Scenario
1	Existing Conditions	2010	NA	10%	No Waves
2	Existing Conditions	2010	NA	10%	Wind Waves
3	Existing Conditions	2010	NA	10%	Ocean Swell
4	Existing Conditions	2010	NA	1%	Wind Waves
5	Existing Conditions	2025	0.40 ft	10%	Wind Waves
6	Existing Conditions	2025	0.40 ft	10%	Ocean Swell
7	Existing Conditions	2025	0.40 ft	1%	Wind Waves
8	Existing Conditions	2050	1.38 ft	10%	No Waves
9	Existing Conditions	2050	1.38 ft	1%	No Waves
10	Existing Conditions	2100	4.60 ft	10%	No Waves
11	6-inch extension	2010	NA	1%	Wind Waves
12	6-inch extension	2025	0.40 ft	1%	Wind Waves
13	10 ft (MLLW) seawall	2010	NA	1%	Wind Waves
14	10 ft (MLLW) seawall	2025	0.40 ft	1%	Wind Waves
15	10 ft (MLLW) seawall	2050	1.38 ft	1%	Wind Waves
16	10 ft (MLLW) seawall	2050	1.38 ft	10%	Wind Waves
17	10 ft (MLLW) seawall	2100	4.60 ft	1%	Wind Waves

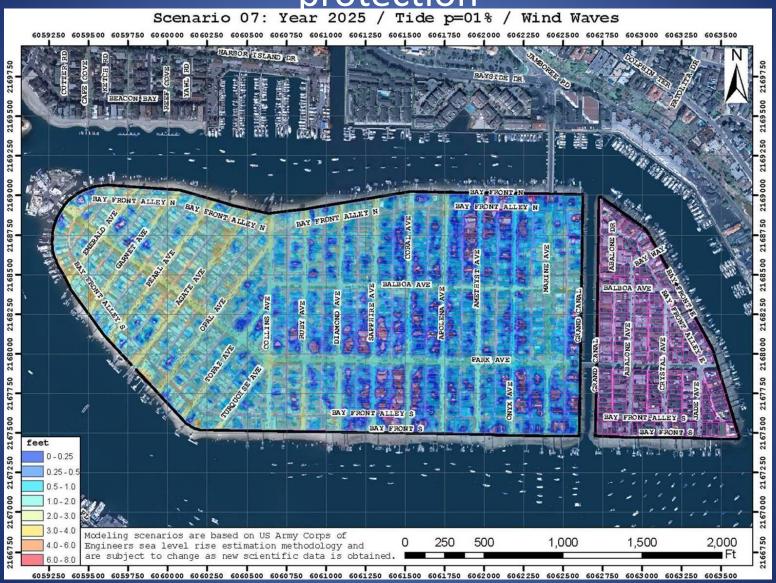

Average Flood Depth, Parcel and Building Impacts Associated with Each Model Scenario

Scenario	YEAR	TIDE HEIGHT (ANNUAL EXCEEDANCE PROBABILITY)	Wave Scenario	AVERAGE * FLOOD DEPTH (FT)	IMPACTED** PARCELS (NUMBER)	PARCELS IMPACTED (%)	IMPACTED*** BUILDINGS (NUMBER)	IMPACTED BUILDINGS (%)	FLOOD EXTENT FIGURE NUMBER
Existing Co	Existing Condition Scenarios								
1	2010	10%	No Waves	0.26	61	4.0	3 ± 2	0.2	Figure 3.5
2	2010	10%	Wind Waves	0.26	61	4.3	3 ± 2	0.2	Figure 3.6
3	2010	10%	Ocean Swell	0.29	514	36.5	24 ± 5	1.7	Figure 3.7
4	2010	1%	Wind Waves	0.36	324	23.0	22 ± 4	1.5	Figure 3.8
5	2025	10%	Wind Waves	0.48	681	48.3	66 ± 7	4.7	Figure 3.9
6	2025	10%	Ocean Swell	0.79	1,176	83.4	235 ± 13	16.6	Figure 3.10
7	2025	1%	Wind Waves	1.16	1,179	83.6	420 ± 14	29.8	Figure 3.11
8	2050	10%	No Waves	1.84	1,410	100.0	894 ± 17	63.4	Figure 3.12
9	2050	1%	No Waves	2.15	1,410	100.0	1047 ± 15	74.3	Figure 3.13
10	2100	10%	No Waves	5.02	1,410	100.0	1410 ± 1	100.0	Figure 3.14
6-inch Exte	6-inch Extension Scenarios								
11	2010	1%	Wind Waves	0.03	0	0.0	0	0.0	Figure 3.15
12	2025	1%	Wind Waves	0.12	12	0.9	0-1	<0.1	Figure 3.16
10-foot Seawall Scenarios									
13	2010	1%	Wind Waves	0	0	0.0	0	0.0	Figure 3.17
14	2025	1%	Wind Waves	0	0	0.0	0	0.0	Figure 3.18
15	2050	1%	Wind Waves	0	0	0.0	0	0.0	Figure 3.19
16	2050	10%	Wind Waves	0	0	0.0	0	0.0	Figure 3.20
17	2100	1%	Wind Waves	5.30	1,410	100.0	1410 ± 1	100.0	Figure 3.21

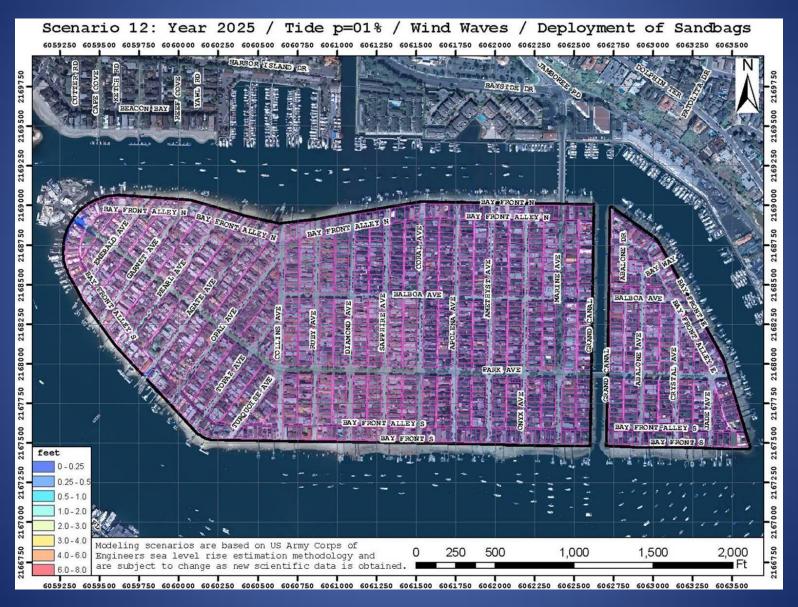
2010 Flood Scenario 3: Ocean Swell

2010 Flood Scenario 4: Wind Waves

December 2010 Flooding on Turquoise Extreme Tide p=40% w/ Ocean Swell

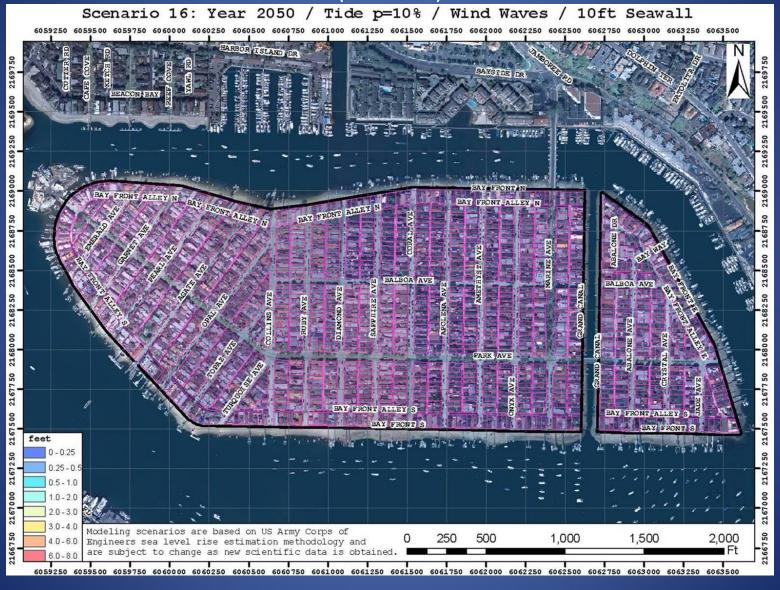


Flooding at Balboa Island Ferry Landing

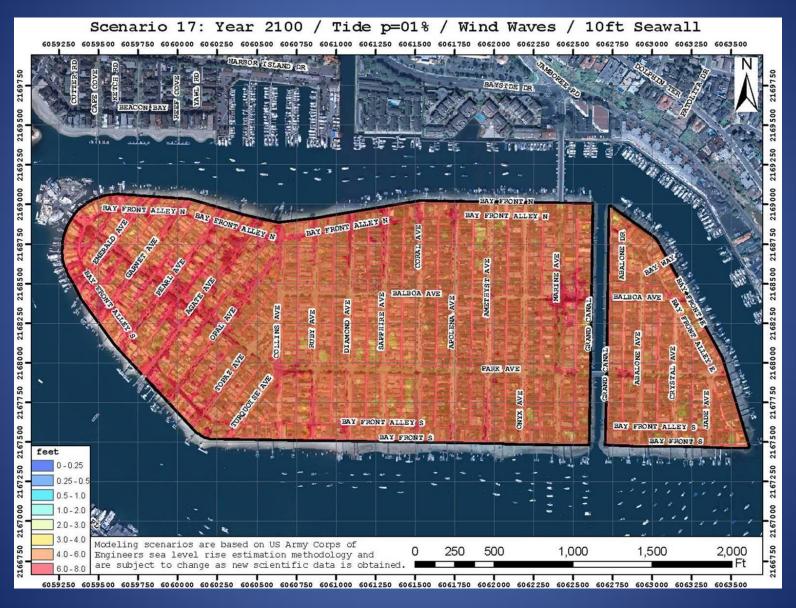

(2005 Flood Event)

2025 Flood Scenario 7: w/o additional protection

2025 Flood Scenario 12: w/ 6-inch cap



2050 Flood Scenario 8: w/o additional protection



2050 Flood Scenario 16 w/ New Seawall at 9.8 feet

(NAVD88)

2100 Flood Scenario 17: w/o Seawall Extensions

Protection Option: Seawall Extension

- 1. Extend existing cap 6 inches
- 2. Remove existing cap and replace with 6-inch taller cap
- 3. Lower cost option: Use sandbags or geotextile bags

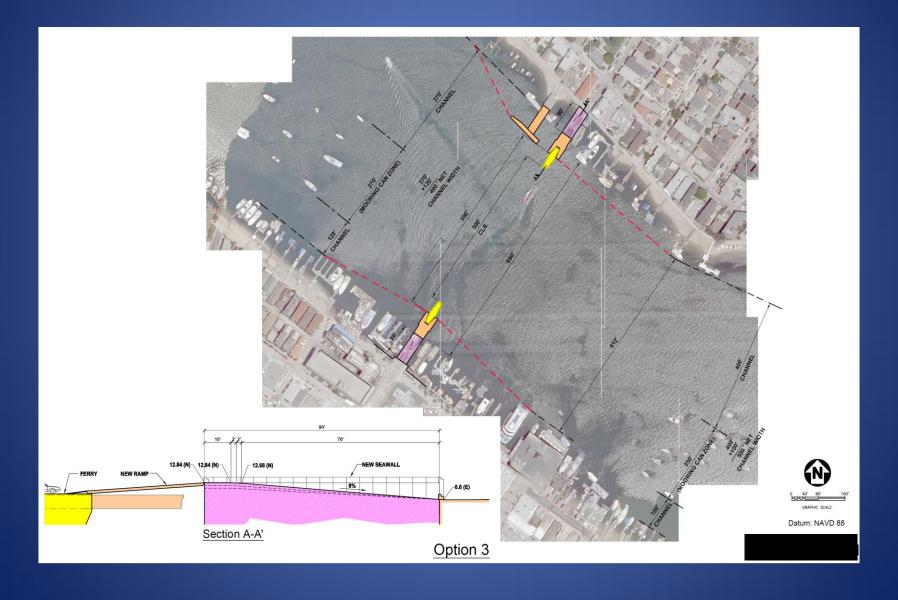
New Seawall – Option 1 H-piles and Concrete Wall (Lag) Panels (No tiebacks)

New Seawall – Option 2 Steel Sheet Pile Bulkhead


(No tiebacks)

Two Options to Raise the Launch Ramp at Balboa Island Ferry Landing

Option 1
Street Approach Ramp with Diverted Walking Path



Option 2
Street Approach & Boardwalk Ramps

@ 8% : ELEV. 12.5

Balboa Island Ferry Modification Option

Rising Groundwater

- First Floor Elevations: 6.2 to 11.6 feet (NAVD88)
- 2050 Groundwater elevation at High Water 6.1 feet
- 2100 Groundwater Elevation at High Water 9.3 feet

Seawall Construction Cost Estimates (Concept-Level)

MITIGATION COMPONENT	Unit Price (\$/LF) 1	CONCEPTUAL COST 2			
Interim Seawall Height Extension					
Alt. 1: New Seawall Cap	\$625 - \$725	\$8.25 - \$9.57 million			
Alt. 2: Existing Seawall Cap Extension					
Option 1: Mechanical Extension	\$250 - \$300	\$3.30 - \$3.63 million			
Option 2: Polypropylene Sandbags	\$170 - \$190	\$2.26 - \$2.52 million			
Option 3: Geotextile Bags/Tubes	\$130 - \$160	\$1.72 - \$2.12 million			
New Seawall					
Option 1: Steel H-Piles w/ Conc. Panels	\$3,800 - \$4,000	\$50.20 - \$52.80 million			
Option 2: Steel Sheet Piles	\$4,100 - \$4,300	\$54.10 - \$56.80 million			
Subsequent Seawall Extension: 3 – 4 feet (When/If Required)	\$400 - \$500	\$5.30 - \$6.60 million			
Ferry Landing and Bridges					
Ferry Boat Landing and Fuel Dock Retrofit (All 3 Options)		\$3.50 -\$5.00 million			
Bridge Retrofit (3 bridges)	\$250,000 - \$350,000 per bridge	\$0.75 - \$1.05 million			
Total Estimated Program Cost ³		\$61.47 - \$79.02 million			

Potential Funding for the Balboa Islands Seawalls

- 1. City funded feasibility studies
- 2. Assessment District Formation
- 3. Possibility of limited Federal or State Grants
- 4. Combination of funding

Recommend Plan to Move Forward

Phase 1 - Between 2011-2015

- a. Update City codes, Standards & Policies as necessary to plan for higher sea levels.
- b. Implement a Community Awareness Program
- c. Establish new Lowest Floor Elevation.
- d. Implement new Harbor-Wide Seawalls Height of Minimum 10 feet Nav 88.
- e. Begin Design & Permitting of Balboa Islands Seawall, Ferry Landing & Bridge Retrofit.
- f. Identify and Develop Funding Sources.
- g. Look to Elevate Infrastructure when Reconstructing.

Recommend Plan to Move Forward

Phase 2 - Between 2016-2020

- a. Construct New Seawalls around Both Islands with Top Elevation at 10' Nav 88.
- b. Look to Elevate Infrastructure when Reconstructing.
- c. Monitor and Evaluate Mean Sea Levels.

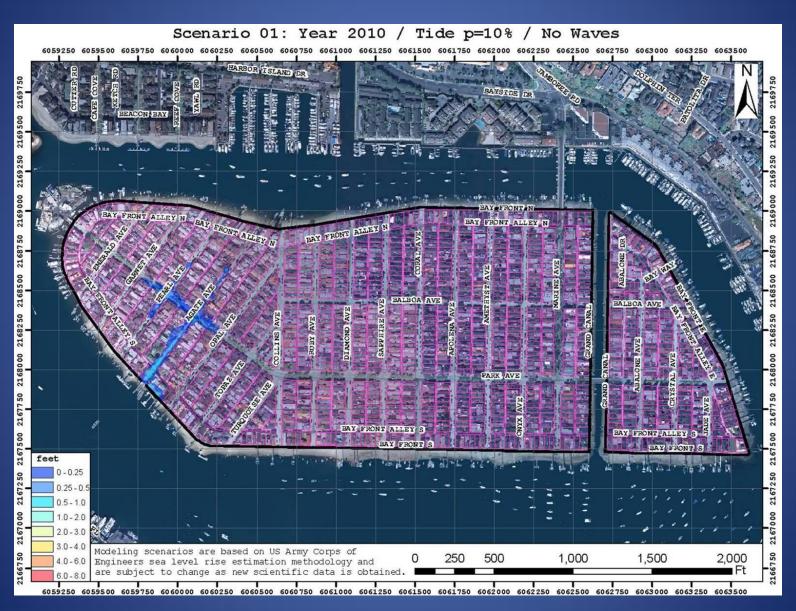
Phase 3 - 2021-2050

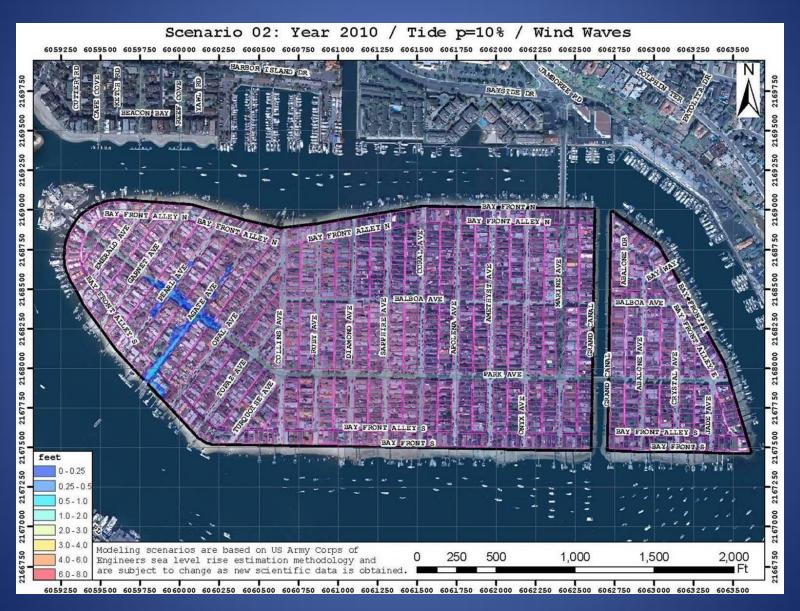
- a) Look to Elevate Infrastructure when Reconstructing.
- b) Monitor and Evaluate Mean Sea Levels.

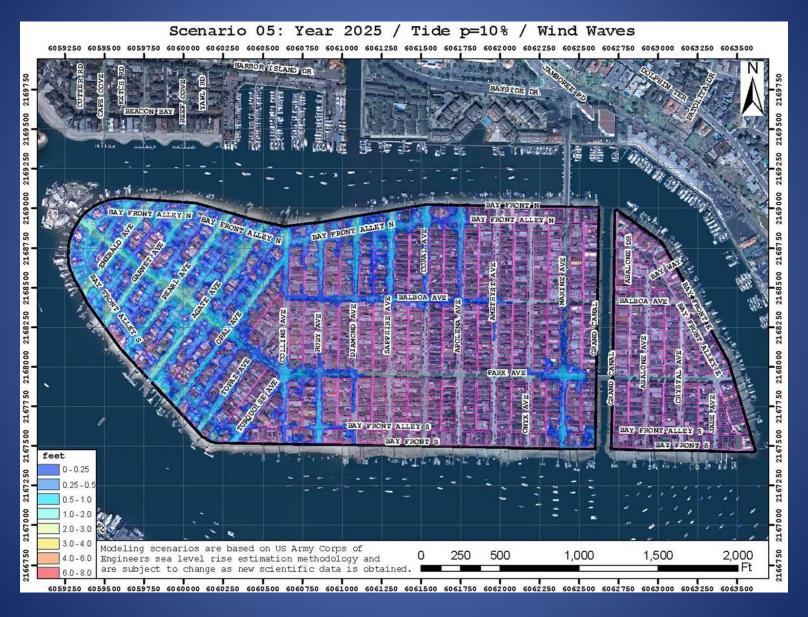
Recommend Plan to Move Forward

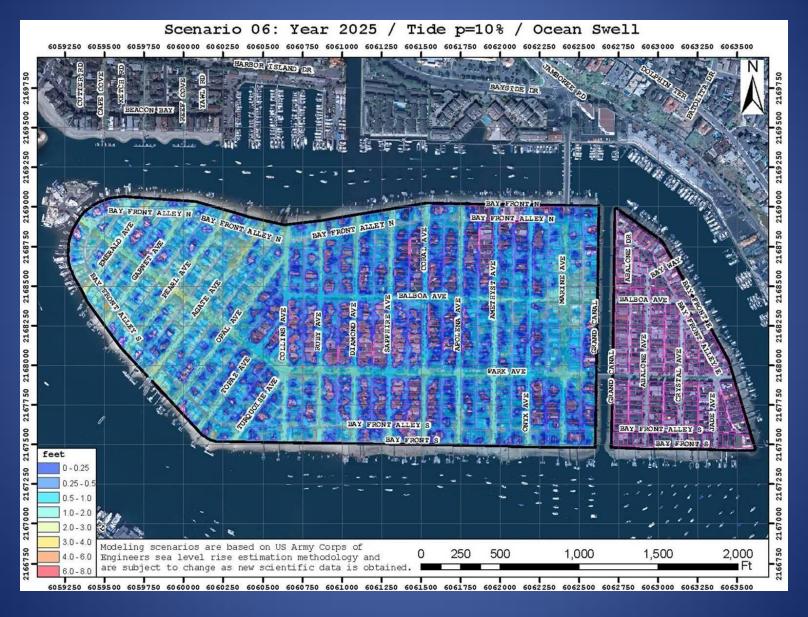
Phase 4 - 2050-2060

- a) Monitor and Evaluate Mean Sea Levels.
- b) If needed, extend Seawalls to Elev. 13 or 14.
- c) If needed, Implement Dewatering System or Other Means to Address Groundwater.
- d) Look to Elevate Infrastructure when Reconstructing.


Public Works Department


A Well-Engineered Machine


Protecting and Providing Quality Public Improvements and Services



This presentation, as well as the complete Seawall Assessment and Potential Overtopping Report can be found at www.newportbeachca.gov/citymanager and then click on Tidelands Management Committee.

